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AN APPROXIMATE SHELL THEORY FOR
UNRESTRICTED ELASTIC DEFORMATIONS

MORRIS STERN

University of Texas, Austin

Abstract—An approximate shell theory is formulated within the framework of the general theory of finite elasticity
for unrestricted deformation. A deformation field is constructed throughout the shell based on the solution of the
corresponding membrane problem. An additional deformation is then superposed on this ‘“‘membrane state”
and the resulting equations of motion for the final state linearized in the additional displacement. These equations
are then “‘averaged” through the thickness of the shell to yield an approximate shell theory. Details are carried
through for the case in which the additional deformation is itself linearized in the thickness variable so that normals
to the middle surface remain straight and uniformly extended, but not necessarily normal. The resulting theory is
then applied to the problem of a uniformly twisted, extended and inflated cylindrical shell.

1. INTRODUCTION

A FULLY general non-linear bending theory for elastic shells within the framework of three
dimensional large elastic deformation theory is not presently available. The main reason
for this appears to be the absence of fully general constitutive equations within this frame-
work relating deformation measures to stress measures for the shell. General and exact
treatments of the deformation and equilibrium of shells do exist, for example those found
in [1, 2], and more recently [3], where within the framework adopted (Cosserat surfaces)
general constitutive equations are furnished. However their relation to the general consti-
tutive equations of large elastic deformation theory has not as yet been fully explored except
for some examples (i.e. membrane theory, Kirchhoff hypothesis). Other significant partial
results also exist for non-linear material behavior. In particular, Wainwright [4] has con-
sidered such shells suffering infinitesimal deformation, and Naghdi and Nordgren [5]
have constructed a theory under the Kirchhoff hypothesis. The general theory of elastic
membranes (from a three dimensional point of view) may be found in [6], and Corneliussen
and Shield [7] considered the addition of an infinitesimal deformation to an already finitely
deformed membrane but still without bending and transverse stress effects.

In the present paper a “first order” bending theory is formulated for unrestricted de-
formation and non-linear elastic behavior of thin shells. It is based on the general non-
linear theory of elastic membranes and the linear theory of small deformations superposed
on an existing finite deformation. The development is concerned with the interior problem
only ; the question of appropriate boundary conditions will be considered in a later paper.
For the most part general tensor notation is used with the added convention that the range
of Latin indices is 1, 2, 3, while that of Greek indices is 1, 2. We use freely well established
results of finite elasticity and shell theory ; detailed derivations of results of the former and
of membrane theory may be found in [6] and [8], of the latter in [2] from which much of the
notation in the present paper is taken.
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906 MORRIS STERN

2. BASIC EQUATIONS OF FINITE ELASTICITY

We consider here only homogeneous isotropic elastic bodies. Take G; and g; to be the
covariant base vectors in the reference (natural) and current configurations respectively of
the body referred to the convected curvilinear coordinates x*. The components of the
respective metric tensors are thus

G;=6G;.G; 8= 8- §;
and
Gii = ¢ Gy i ol gy
G g
. ) _ B 2.1)
G' = GG, g =g"g;
with
G = detH Gij“ g= dEtHg!’jn'

Since the material is isotropic and elastic there is a stored energy function of the form

W = W(Ilal2’13)

where
I, = g,..G™ I, = I,§™G,, I, = g/G. (2.2)
The contravariant components of the stress tensor are then given by
" = OG"+ ¥, (G™G* — G G™)+ Pg™ 2.3)
where
O = 21;*%‘% Y= 215*2—?: P= 213%‘{—. (2.4)

If the material is incompressible as well as elastic then W becomes a function of only I, and
I,. In this case P becomes a new independent variable and we add the constraint condition
L=1 ‘
On the surface element whose outward normal is n = n,g* we have the stress vector
om) = c*(n)g, = o8 (2.5)
In particular, on an exposed surface of the body if s = s*g, represents the applied surface
traction there we must have
om)=s or o¢™n, = s (2.6)

As a consequence of the balance of momentum the stress tensor satisfies the equations
of motion

&%, 4+ pF° = pf* 2.7)
where the stroke denotes covariant differentiation with respect to the metric g;;, p = 1 3%,

is the current mass density of the material, & = #°g, is the extrinsic body force density
and f = f°g_ the acceleration of the material particles.
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An additional deformation may now be superposed on the existing one by adding to
the motion of each particle an additional displacement en, where ¢ is an order parameter
eventually to be set equal to unity. If the additional displacement is presumed to be small
we linearize the perturbed state equations in the added displacement. Thus if Y* represents
a quantity in the perturbed state whose value is i in the current state, we write

Y* =y +ef +ole)

and set ¢ = 1. Then we compute

gi=u,; gi; =8 .8+18. 8
g = —g"eg,, ' =g"+e"%; @8)
g =88""8mn-
Furthermore
Iy = G™g
I = LG, {878 — &8 )8 mn (2.9)
Iy = g'/G = I:,8™gm,
and
O = dI+ FI+{E 15O,
Y = FI+BI+(9 ~51; '), (2.10)
P = L&, + 91, +(® +15 *P)I4]
where
oA = 21;*5622/ B = 21;*6;;; € = 21;*%
P = 21;*5—‘3%% &= 21;*5‘;—23—?;: F = 21;*%?5 (2.11)

and therefore
g;rs — (DtGrs+ \{;/gmn(Ganrs_“ Ger,ﬂ)’*‘Pfg’s

+ [W(G’""G’s ~G™G")—P, g"”g"’]g,’,. . (2.12)

For an incompressible material we note that ¢, 2 and £ do not occur while P’ is a new
independent variable and we have the additional constraint condition I = 0.
The equations of motion in the perturbed state are

O+ pPF T = prfAS {2.13)

where the covariant differentiation is with respect to the metric g%, and the components of
the vectors #F* = F*g¥ and f* = f**g? are referred to the perturbed base vectors. One
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may now subtract equation {2.7) and linearize to get

0"+ 0" LY Y+ pl(L+p' [ p)F ¥ — F ) = pl(1+ p'/p) f*— f*] (2.14)
where
{mn} = %gpq[g;nq,n'*_g;n.m“g;nnq 2 }gkq]

. . , {2.15

= %gpq[gmqin +gqnlm—gmnlq] )
are the additions to the Christoftel symbols. Finally since mass elements are conserved we
observe that

plp = —3h/15. (2.16)

3. BASIC EQUATIONS OF ELASTIC MEMBRANE THEORY

Let x* be convected coordinates in the membrane surface with a, the corresponding
base vectors and a,, the surface metric coefficients in the current state. In the reference
state we denote the base vectors and metric coefficients by A, and 4,4 respectively. The
membrane surface may be thought of as representing the middle surface of a thin shell so
that we introduce a third coordinate x* whose corresponding base vector in the current
state is a unit vector a5 in the direction a, xa,. We observe that |x3 < h/2 where h is the
current thickness of the shell. In the reference state we construct the unit vector A in the
direction A, x A, and assume that the base vector corresponding to x> in the reference
state is 27 'A; where 4 = A(x*) may be thought of as a uniform extension ratio through the
thickness of the shell. We use the notation °y to denote that the quantity ¥ is evaluated on
the membrane surface x* = 0. Thus we find

o, a3
°8up = g P =0a¥ g =g =0

°g33 =g’ =1 ‘g=a

{3.1)
oGaﬁ — Az{! oGaﬁ — AaB 0Ga3 — oG«x3 = 0
°Gy3; = A7 °GP = A? °G=4"%4.
The Christoffel symbols evaluated on the membrane surface are found to be
Q{aﬁs} = ga B 3.'3}‘ = brxﬂ 0(53} = —b§
oip 1 _ os3 3.2)
) =Clal = } =0

where I'; denotes the Christoffel symbol associated with the membrane surface metric
Gy, and

b7 = a®®bf = a"Pab,,
with
baﬂ == bﬁa = 33.3‘:”3 (3.3)
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the coefficients of the second fundamental form for the membrane surface in the current

configuration.
It now follows that
OII = aaﬁAaﬁ+A’“2 012 = 013(aaﬂAmp+/{—2) 013 == Aza/A (3.4)
so that

°g% = A +°W[a, (477 4% — A7 A7)+ )2 4*] + °Pa**
°g3 = A[°0 + °Ya,,4%] +°P (3.5)
00_113 — 0

Next we take °6>> = 0 based on the premise that the membrane stresses in a thin shell
are much more significant than the transverse normal stress. This furnishes an equation for
the determination of A” if the material is compressible, or for °P if the material is incom-
pressible (A2 = A4/a in this case is determined from the condition °I; = 1),

Now let us restrict attention to equilibrium states so that f vanishes. We write = P*a,
for the total extrinsic force measured per unit area of the current membrane surface. Then
the equilibrium equations for the membrane may be written ast

(h°6P%) 5+ 2% = 0

(3.6)
hbgo™ +P3 =0
where the double stroke denotes covariant differentiation with respect to the membrane
surface metric a,;.

If the deformation pattern defined by membrane theory is extended through the shell
thickness we obtain what might be called the “‘membrane state”. This may also be character-
ized by the statement that the middle surface and its normals are preserved under the
deformation, the material being uniformly extended along the normals. Then we can write
for the membrane state configuration

8, = M52, g3 =42, (3.7)

where
H = 35 —x3bf (3.8)

so that
8up = 130, g = pi it 9
.3=8Y=0 gy3=g%=1 g=yp’a )

where

po=ufl = 1=x3b5+(x*)*bf]

uy = 9—0%{ (3.10)

t These equations follow from the development leading to equation {4.1) of the next section upon dropping
all dependence on the thickness variable x>, or see for example [6], chapter 4.
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A similar treatment for the reference state yields

G, = MJA,+x°(A71) A, G; = A7A, (3.11)
where
ME = 58 —x3B¢
B — 4By — A 4%B,, (3.12)
and
By = By, = A7 'A5. A,y (3.13)
Then setting
M = |Mi| = 1 -x*B;+(x*)* Bf
My = Ms (3.14)
we find
Gap = MEMGA,, +(CPOAT N7, Gy =x°17107Y),
Gys =A% G =Ai"2M34 (3.15)

-1 -3
GF = MIMEA*® G = —xPM27Y),6% G = A1+ (x*)PG™(A 1) (A1) .

On the basis of this deformation pattern and the constitutive equations for the material
we may now compute the stresses throughout the shell. If one would wish to maintain the
membrane state in equilibrium he would of course have to supply body forces in accordance
with equation (2.7}, namely

pF* = —a",. (3.16)

4. APPROXIMATE BENDING THEORY

Let us now consider a class of problems for which the loading consists of a prescribed
body force density #* and tractionss™ and s* applied to the inner (i.c. x* < 0) and outer
(x> > O)surfaces of the shell respectively. The shell is either in an equilibrium configuration
or is executing smail motion in the neighborhoed of an equilibrium configuration. In the
latter case we may wish to allow the loading to be time dependent in which event the actual
loading is replaced with some time independent average loading so that an equilibrium
configuration may be defined in whose neighborhood the small motion takes place. We
denote by x** coordinates in the shell middle surface and x*? is distance measured normal
to the middie surface. In general an asterisk on a symbol denotes that the value of the
quantity represented is to be based on the actual value in the shell referred to the x*-
coordinates. Thus with o*™ the components of the stress tensor throughout the shell we
note that the equations of motion are simply (2.13). The usual averaging procedure across
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the shell thickness (see [2], Section 5 for examplet) then yields the following set of equations :
NI~ b3Q + 1P 4 p* = ¥

OfE + b N* 0+ 1% 4 p** = F*3 (41)
xfa _ ryka *a kX *a
where M”tﬂ Q +m* +r =G
(h*2
N*ﬂa = #*u:aa*ﬂp dx*3
o /2
(" h*/2
M*Br x*3u*u2‘“6*”” dx*3
Jo—h2
h*)2
Q*“ — /4*0'*“3 dx*3
J —ht2
(* h/2
p*" = ”*u;ap*g;*ﬁ dx*3
J —h2
(" h*/2
p*3 — y*p*g*_“ dx*3 4.2)
J =2
(* h*/2
P = x*3#*u;ap*g'*ﬁ dx*3
J —hY2
( h%/2
F** = ,u*,u}“p*f*ﬂ dx*3
J —h*2
2
F*S = u*p*f*3 dx*3
J —h*2
(* %2 s
G** = x*3u*u;,?“’p*f*” dx*
o —h‘/2

with I* = [** a¥ and m* = m**a* the resultant force and couple load measured per unit
area of middle surface and due to the surface tractionss* and s, i.e.

* *k |x*3=H*/2 * 0% wa Jx*3 =h*/2
I*"=[u s.a :) m*a___l:u a¥xs.a ]

n*. ag‘ x'3=—h’/2 In*.a’_{ x"3=—h"/2
where n* is the unit outward normal to the appropriate shell surface.
The corresponding interior membrane problem is obtained by taking the membrane

loading to be precisely the total extrinsic load per unit area of the membrane surface based
on the geometry of the membrane state, i.c.
us. a:z}x3=h/2

h/2
P =j uugpF ** dx3+l:

—~h/2 N. a3 |- —pp2 43

hj2 s. 4, | =h2 43)
P = JpF*3 dx? + K22

—hj2 n.a; x3=—n/2

T Although this derivation is valid only for constant thickness shells, it is easily seen that the resulting equations
hold also in the more general case.
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where the other variables appearing are based on the resulting membrane state configura-
tion. Furthermore, we suppose that the loading and support conditions for the shell may
be phrased so that the membrane equilibrium problem has a solution. We note, as a conse-
quence of (3.6), that

(BooP)p = =P hby°c® = 2 (4.4)
and in the associated membrane state configuration we observe that
6 = °¢* + O(x?)

4.5
6*3. 6% = O(x%) )

We next superpose on the membrane state the additional displacements which carry
the shell from the membrane state configuration to the actual current configuration, and
without further reference linearize all subsequent expressions in the components of this
additional displacement. Let us therefore write this additional displacement vector in the
form

u = wak(= i*a,) = “u+x>ou (4.6)
where

o]

u = Us-, = 0(x")a% + w(xP)a (= v*a, +wa,)

4.7
5u (4.7)

Ea*+ia¥(= &a,+ ) ay)

In what follows it will be important to distinguish between the x- and x*-coordinate systems
in the current configuration: the former are convected coordinates defined as “shell
coordinates” in the membrane state, while the latter are “‘shell coordinates’ with respect
to the current configuration.

In order to facilitate computation we suppose that to within the degree of approxima-
tion entailed in the lincarization we may assume that the functions £, and A’ depend only
on the middle surface coordinates x* Thus the middle surface in the membrane state goes
into the middle surface in the perturbed state (i.e. the linearized current state) and we can,
without loss of generality, take the shell coordinates to be identical to the convected
coordinates on the middle surface; that is, for the same material particle on the surface
x*3 = x% = 0, we have x** = x* Then one readily computes

a, =", = (v, ,—b,,wa’+(w,+biv,)a,
g = 20y —bagW]
a’ = 2a[vf,— byw] “48)
Tl = 50"y 5+ Gg o= Top 1)
= Vijap +[bybas — byabp)]v"
+a%bygw  — 266w g — bl pw

where, in obtaining the last expression, use was made of the Gauss-Mainardi-Codazzi
relations

biig = biia  Riup = bibg,— bjby,
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where R, is the Riemann—Christoffel tensor, so that
— L
Vol tapy = ngaﬂvq
We have also used the convention that parentheses enclosing a pair of indices means that
the term is to be symmetrized in those indices, while square brackets mean the term is

antisymmetrized.
Next we observe that a¥ must be the unit normal to the current middle surface hence

ay = a *a} xa,+a, xa,]—(3da'/a)a,

= —(bhv,+w,)a%
Then
by = a,5.2;+2,,.25
oo : (4.9)
= Wyjap +2b, V0 gy + b5 g0, — bopbfW
and we note that
bF = af*b._+a'f*h
* " * (4.10)

= a*w,, + bivl, — bIh, + bE| 07 + bobhw.

Now the integrals of equations (4.2) are evaluated along the x*? coordinate lines in the
perturbed state, for which we write the vector line element in the form

dr* = dx*%a¥ = dx*°[a;— (bvy+w )a%].
The same material line element in the membrane state configuration may be represented as
dr = dx*g, = dx*a;+dx*ula,.
But the difference in these vector line elements is just
dr* —dr = du = dx*u,
= [dx’us 3+ dxP(bGu, + u; 5)]a,
+[dx3uy, 3 +dxP (1 p — bopuz)]a*.

Upon comparing these expressions and linearizing, it follows that along the x** coordinate
lines the convected coordinates satisfy

d

x* %*3
dx?

= — =% with
ﬂlf’ dx3

=1+

where
EP = aPPwy+ L0+ binf
may be recognized as the relative rotation in the x?x3-plane of the normal and middle
surface at the middle surface.
Let us now consider integrals of the form

h*/2 h*/2
J* :j I/I*(x*k) dx*S K* =J x*3 l/l*(x*k) dx*J

—h*2 —h*/2
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where

P = P+ P(xh)

with x* and x referring to the same material particle. Now along the particular x** co-
ordinate line x** = ¢* we may write

Y(x®: x3) = (e XP)+ XPREEY (5 x%)
where
xKs =j\ W2 dx(= X365+ 0(x)).
0
Thus we write
*=J+J  K*=K+K

with

hi2 hi2
J :f YoM dx* K =j x*(x*) dx3

—h2 ~h2
B2 B2
J = /1’J+E”f xX*K2Y , dx> 4:( Y dx?
—h{2 ~hj2
2 hi2
K = 2);K+aﬁf (PR dx® + f Y d
—hj2 —h{2

the integrations being performed along the x? coordinate lines in the convected system.
With similar definitions for N*/, N"*#_etc., equations (4.1) can be put in the form

N'f5—b3Q* + TN + T NP — b0 4 p* = F**
Offa+ bygN™? +T 507 +byyNP +p? = F*3 (4.11)
a0y TAEMP* 4+ TEMPP 41 = G*®
with
p* = p**+1**+ Nig — b50°

hi2 hi2
= pre4 e +U‘ ppse?e dx3] - b‘;;j‘ uot? dx®
—h{2 e ~hi2

k)2

= [p** 4 P** — P +[J (upsat? —°gh?) dx{}

~n/2 [18

w2
- b;j po?? dx?
2

n2 h2

pd = [p*?+ 13— 2% +[j uc™? dx"‘:‘ + baﬂj (upbo™ —°6™y dx?
—hj2 fla —hi2

hi2 B2
PP L IL L x3pt,u;a‘9" dX3 — #0.43 dx3.
—hi2 i —hj2
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In view of equations (4.5) we note that each of the remaining integrals above is at least
O(h®), and further because of the way in which the #* were defined (equations 4.3) the
remaining terms can be expected to be small.

Once the membrane state has been determined we may compute the components of the
stress tensor in this configuration from the constitutive equations and thus evaluate N*,
M*® and Q*. Furthermore, it is assumed that enough is known about the nature of the pres-
cribed loading so that the terms p’* and r'* may also be explicitly determined. Next we take
f* = ii treating the membrane state as an equilibrium configuration. (In the event the actual
loading is time dependent as described earlier, the varying part of the load is absorbed in
p*and r'*) Then

f* = f¥gr = i, ~ i 1 2g, +il'g, (4.12)

whence

and we have

n2 n2
F** = j upii* dx3 G** = j x3ppii* dx3 (4.13)

If we write

. w2
A= j (c3Yepp dx3 4.14)

—h/2

then
4] 1.
F** = 4i* 4 A&
0 1.
F*3 = A+ Al (4.15)
1 2,
G* = A"+ A&

The only unevaluated terms remaining in equations (4.11) are those involving N'*,
M and Q®. We define the following integrals:

x PRIZ
A% = (x*VxI(us*?) , dx?
J —h2
% [h/2
AP = (x>l (uphe™),, dx?
J —h/2
K (72 -1
B¥ = () u pbo® dx? (4.16)
o —h/2
K "2 -1
Bfr =1 (Noup] pfo dx?
& —hi2

K K k2
B = B;B?x(zj (x3)k‘u0a5 dx?

—hi2
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all of which may be evaluated explicitly once the membrane state configuration is deter-
mined. Then

N# — N"ab ) No# 4 5P }1:17
— (b + 2B (00 B + Brse)

M = MY 4 27 Mo 4+ 2P 4% (4.17)
— b+ ABI)O0B + é;ﬂﬂ)

1 1
Q" = Q"+ /Q+EP AL —(b] + A b B

where

f'hjz

N — yuﬁo”“" dx?
o —hi2
["hj2

Muacﬁ — Xs,u/uﬁa'“” dx3 (418)
J ~h/2
[h/2

Q"a — #gu.’s dx3
—hi2

o

are the only unevaluated terms remaining.
From equations (2.8} and (4.7) we have
Gog = 151015+ 7L,y 5= Doglw +x31)]
+ 10,10+ X7 E e = bpalw + X7 1))
BLYp]| pll P (4.1 9)
g;?; = E““}"X ‘}":xx

g33 = 24.
We then write equation (2.12) in the form

s . Lcprsmn
- Zy gmn

where

Frmn = — OGS+ WG GH — GG — grug™)
+ P(g"g™" —2g""g™ + 2.4 G G™"
+2B112,,Gu G GP — GG (g g™ — g"g")
+ 2F[gaG™™(GHG™ — GF G*) + [,G, G (gM g™ - g*mg™™)]
+2%13g"° g™ + 26 1,(G™ g™ + g G™)
+22[1 ,g,8™(GHG™ — GF G*)
+13Gug” S(gklgm" —g"g™]

is determined from the constitutive equations in the membrane state.

{4.20)
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Now in order that the results in the limiting case be consistent with membrane theory as
described in [7], the value of 1’ should be selected so that °¢’*? vanishes. However, this is
possible only if °# 3333 is never zero, a condition which is not always plausible. Indeed, if the
stored energy function is linear in the invariants then a simple calculation shows that
° 3333 = 0, Some other condition is therefore needed to fix A" in such cases, a contingency
which apparently was overlooked in [7]. We might note that this difficulty cannot occur
in the incompressible case as was demonstrated in [7] where both 2" and P’ were eliminated
with the condition °I3 = 0 in addition to °s"33 = 0.

To resolve this problem in the compressible case we merely ignore any additional
thickness change and take ' = 0. Then upon writing

—h{2

k hi2
Srsmn :j‘ (XS)ku{Vrs(mn) dx3 (421)

we find

N

9 L §
N3 — [Sepny_ bgé‘w"v — by S 4 bEbIS* ™ (v, )y — by W)
2 3
T[S pSre by SE 1 pIS e,

0 1
afin3 a =
+[So3 _ phgernd|g,

M’ = same as N"*® except that each overscript is ( (4.22)

increased in value by one

Qua — [§a3r1v _ b;;Slla.’mp] (U b,,vW)

nllv ™

1 2 0
+[S%7 — pUSTIIE,  + SE,

If the material is incompressible the assumed existence of a deformed membrane state
immediately leads to a contradiction, for on the one hand we are prescribing the deforma-
tion off the middle surface so that changes in area elements along a normal are in the ratio
1/M, while on the other hand the normal extension ratio A is constant. This is possible in an
incompressible material only if b* = BZ,|b?| = |Bf|,a not very interesting case. It is therefore
somewhat unrealistic to base the computation of the constitutive functions for the material
on the membrane state deformation throughout the shell thickness, and the same argument
can be used against incorporating the effects of changes in the transverse normal strain,
in effect, A". We therefore evaluate the material functions @, ¥, P, .7, #, % only on the shell
middle surface and ignore the effect of 1" in g,5 and g,;. However, in order to be consistent
with membrane theory as developed in [7], in the limiting case, we retain

ghs = 24 = =2(vf,—bsw) (4.23)
computed from the requirement °I3y = 0. (The function P’ is then determined so that

°¢'33 = 0.
Thus for an incompressible material we write

rs 1 cprsmn s rsp’
g = 7"¢ Emnt+8 P
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where for this case we have

G = 20(A/a)g™g " + 2% [aP A g g + GG — GG
+20/ G G™ + 2982, G i GH G — G¥ G) (gPg™ — gPmg)
+27[G,,G(g"g™ —£""g™)

+ g“Gmn(leGrs — GkrGlsﬂ

(4.24)

where we have dropped the prescript denoting that the material constitutive functions are
evaluated on the middle surface, this being understood in the incompressible case. We take
P’ independent of x> and hence

P = on13mnogmn
= ( y3333aaﬁ___oy33(a§))(va”ﬂ_baﬂw).

Then
G = [FrOPpE I (e p 3333 B PINEN (oy ) 29
+ PN, g BPronysE
Upon writing
';‘*rsaﬂ = (033338 _ ogpaa(am)rm (¥ ug’ dx>
e (4.26)

B2
_‘aaﬁ J (xS)kuyrs33 dxs
—hk/2

we find, for an incompressible material, that equations (4.22) must be augmented by adding
the term
[} i
(T«zﬁav - bg Tﬂ!prw) (vu v bnvw)
to N"* and adding a similar term with the overscripts increased by one to M"*. In addition,
the term

0a3qv
T*"™(y)y — byyW)

should be added to the expression for Q"
Finally we note that for an incompressible material p = p, and p = 0, hence the

integrals of equation (4.14) become

2 k k+ 1 1
Ji?—(—) [Hk b ( )(b‘b’ b%b;)], k=0,2

& _ k12 k+3(2
- zpo hk+2 .
~5l3 GiEd k=1
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1n both cases, whether the material is compressible or incompressible, when equations
{4.12), (4.13), (4.17) and whatever form of (4.22) is appropriate are substituted in equations
{4.11), we obtain a system of five linear equations in the middle surface displacement com-
ponents v°, w and in the relative rotation components Z*. The limiting case (h - 0} reduces
to the membrane theory of [ 7] (except as noted in the compressible case).

5. UNIFORMLY INFLATED, EXTENDED, AND TWISTED CYLINDRICAL TUBE

As an example we consider here the particular case of a circular cylindrical shell of an
incompressible elastic material subjected to uniform internal pressure and to an axial
tension and a twisting couple applied to the cylinder ends. The deformation of the shell
middle surface, considered as a membrane, is presumed to be as indicated in the figure,
In the current configuration, with respect to cylindrical polar coordinates {p. 6, y), the
membrane is placed at p = ¢ and surface coordinates are chosen to be

x!=x=c x*=y

/
!/
71 /
/N / !
Plreferoncell | plourrent) !
// %, | f&c 9/
[_v |
R b e B
e L Ny
I, I s
/V v
P ¥/ X, / 4
y 7 /1/
Ve Y "

Fi1G. 1. Presumed middle surface deformation.

Thus one computes easily
Ag=3,p5 a*=8% a=1

and the only non-vanishing coefficient of the second fundamental form of the surface is

bll = b% = bli = "”I/Cu
Furthermore all Christoffel symbols vanish:

=0

Now we suppose that the deformation of the shell from the reference configuration to the
membrane state is characterized by uniform expansion of the radius and length of the
middle surface and of the thickness of the shell (which in the current configuration is
assumed to be constant at k) by the factors 4,, 4, and A respectively, and furthermore the
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middle surface is twisted at a uniform rate  referred to the current length. Thus in the
reference state

Ay =277 Ayy = 272407 2ey? A=Ay = =27 ey

A = 2+ 237 A% =13 A= APy = ey A= A7%A5%

Because the material is incompressible, we have

°Iy = A24/a = 1
hence
A=A7A5!
and
By = —Ay/c By, = —A,cy” Bio{= By = Ay
Next set

z=x%c 7 € hf2c
s0 that for the membrane state
p=pl= (e =14z = pi=1
and all other components vanish. Then
g=gu =@E") " =(1+zp g22=87 =gy =87 =1
with all other components vanishing. Furthermore
M= M=(M) = (14322 Mi=Mi=1
Mi=M2=0 M= —(1+2L,M!= —2icpz
and thus
Gy, = ATH1+2A34,2)? Gay = A3 24+ A7 2ctp (1 + 234,2)°
Gia(= Gap) = — A7 (1 +i34,2) Giy3 = 4143
Gy =0 G =(1+111,2)°
G = A1+ 234,2) 2+ A3c%y? G*? =2
G'¥{= G*'y = Ay GR =0 G¥=27%5%
For the membrane problem we have
oI = AZ+ A3+ A7 225 2+ A3y °fy = AT2+ A7 24+ 2323+ A7 2cHy?
and therefore
°g3% = ATRATI@+ (AT I+ AT AT AP+ P

With the condition °¢3® = 0 we thus have

P = 1722520 —(A72 4+ 252+ AT 2 )Y
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and
ol = (=27 207 2+ )@+ (A4 - AT )Y
°g22 = (A2 —A722; H0+ (A3 - 23— Ay )W
°g1? = cY(A3D + AT %P).

The constant values of the stress components are of course consistent with the mem-
brane equilibrium equations (for 2! = 2? = 0). In terms of the applied load we have

N = 2nch°c??
T = 2nc*h°c!?
p(= #°) = (h/cya'!
where N is the axial force extending the cylinder, T is the end couple twisting it, and p the
internal pressure inflating it. We note, of course, that 2! = 2? = (.
In the membrane state we have
0" = (G"= )i 215 %)+ (gl GG — G™G™) —(A7 >+ 43 2+ AT 2y g ¥
so that
o'l = [AM{(1+A14,2) 2+ A3cty? - A7 %5214 2) " 4D
+HATAS+ 27D (14 A24,2) 2+ A7 22y
—(AT 2+ A7 2+ A7 ) (1 +2)7 2
?? = [A3—-A7%1; %0
+[A3A3(1+234,2) 21 +2)2 — A7 2= A7 22y 2]
{A72MA+22(14+232,2) 2 = 1]+ A7 2B (1 + 2 - 11}
6'2 = cY[A12D+ 1] 2¥)

'3 =63 =0.

0.33

We introduce the following direct notation for the components of the additional
displacement :

ux,y) =v'x ol y)=0}xT)  wix,y) = wx?)

Ex,y) =& nley) = EXx).
From the incompressibility condition (4.23) we have
= —(u,+v,+wjc)

where the subscripts x and y denote partial differentiation. We also denote the relative
rotation components of the normals to the middle surface by

B(= &+ w,—u/c) Y(=n+w).
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The additional stresses o””* given by equation (4.25) are thus of the form

o™ = [(1+Z)=97r311—y'S33 _+_grs(ofy3333_oy3311)](ux+w/c)
+[yr522_5prs33 +grs(oy3333_oy3322)]vy
+%[(1+Z)(E¢r512+yrs21)_grs(oy3312+ot¢3321)]uy
+%[yr312 +yr521_grS(oy3312+cy3321)1vx
+%[yrsl3 +5prs3l]5+%[yrs23_+_yrs32}1‘
+Cz{(1+z){¢rslléx+5pr522r’y
o2+ + 2)E, + 0]}

with the coeflicients given in equation (4.24).

Before evaluating the required integrals we expand each integrand in a power series
in z, and after integrating, discard all but the lowest order terms in (h/c). (This approxima-
tion is consistent with the condition that the additional displacement be linear in z.) Further-
more, while it is conceptually no more difficult to carry through these details for a general
incompressible material, a considerable saving in algebraic effort is effected if attention is
restricted to materials of the Mooney—Rivlin type, i.e. ® and ¥ constants so that o = # =
& = 0. For this case then the equations of motion (4.11), when dynamically uncoupled, are
seen to be

ﬁs(uxx + Wx/C) + ﬂSuyy +ﬂ1 luxy
—BQ(vxx + Uyy)+ B7ny+ ﬁllwy/c
+3BE— 3o Y +2323p" /h = I1A3pii

—ﬁQ(uxx-'_ uyy+ Wx/C)+B7uxy+ﬁ§Uxx
+ﬁ1Uyy+ﬂ11ny+ﬁ2Wy/C+/1%/1%pl 2/h = }‘f}%pv

B6Wxx +ﬁ3wyy +B10wxy_ B4W/CZ - BSux/C
_ﬂIZMy/C+ﬂQUx/C_BZUy/C+ %B4Ex
+ 13X, —3Bs(E, + Y) + 4343p 3 h = iiA3pw

=Vt Waxx F Wayy) = 2B10(Wexy + Wyyy +Tw,/c?)
+ 73w, /P st /e =3By st /e 4+ 3Bov. /e — 2B 00, c
F Y6 Uxy/C+ V148 xx T Y102y + V11 L sy —3Bo(Eyy+ Y,,)
—(12¢* /W) [ZB4E/c? =3P X/cPT+7"" = 3A3pE

=3B 10(Wasx + Weyy +3W, /D) = oWy + w0
+7aW,/C% — B otex/C — Brattyy/C + P7Uxy/C + Vglxx/C + Voly,/C
= B120y/C + 710 ax + 712 Xy 71380, —3Bo(E,,+ Ysy)
+(1262/h*) [3BeB/ — B3 Y /P 412 = 2323pY



where
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By = (3+224)(@ + 129)+ 3722
By = (3= 432 — 2203c3 )+ 124412 + )W
By = (325 — 1)@+ A2¥) - 3y 2W
Bs = 4D+ A3P)

Bs = (3+A4i2)(@+ 13W)+ A2 422D
Bs = (4143 — )@+ AJ¥) + 4123 c 2D
By = 3D+ (12 + 23+ A40% + A2y )W
Bs = 23(A330+ )

By = A3+ 3N (I30+Y)

Bo = 222cyP

Bio = 24321230+ ¥)

Bry = 23ch(i3A30— )

Biz = 245cy 21430

Bi3 = @+ (AT + A3 Y

v = (12423 + 222520+ (242 + A3 + 1423 + 2222y )Y
v, = (1+ 2220+ (A3 + 242+ 1425+ 22y )P

73 = —2(4432402 = 312252 ND — 2342 + 442 + 32204 — 2044, + 3222 )W

Yo = —(24+ 1402434204 — 22873 + 12232 ?)0
+(AF =542 =441 25+ 2280, + APy )Y
— (745242 + 52,4 ?)D
— (@2 T34 53408 — 4040, + 43Py PP
Ve = (=7+324A3 = 24823 + 322253 )0
— (822 + 12 +51308 — 6147, + 8222y 2)W
v = —(1+ 2343+ 24325 + 232370
F(2A2-312 30438 4 222y )Y
Vg = — 245130 —2441,%
Vo = —(1— 2123+ 22324 — 2224220
F(2A2— 223048+ 22202 )P
Y10 = @+ (A + 45 — 2323 + Y)Y
P11 = 20+ (247 + A3 + 1425+ 223 )Y
Y12 = 30+(323 + 212 + 32y A)¥
Tis = 20+ (A2 4222 + 2342 + A2c2y2)P
Via = 30+(243 + 343 + 2222y )Y

Il
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o a2s2) 1 REOPP 2p!
= M{"ﬂz[ax‘c

hZ C’:prs p/2
e[
ey +12 dy ¢

There are several things which may be noted about these equations simply from their
form. First, if we consider the limiting case h/c — 0, the relative rotations Z and Y tend to
zero identically, and if we also remove the initial twist (¢ = 0), then the first three equations
reduce identically to the membrane equations obtained by Corneliussen and Shield [7].
One might also observe that since the equations are homogeneous the membrane solution
(for the uniformly extended. inflated and twisted tube) is also a solution which accounts for
“first order’” bending effects (of which there are none, at least in the interior of the tube).
This might have been anticipated because of the high degree of symmetry in the problem.
Nevertheless, these equations do represent a refinement of membrane theory in that some
bending resistance is allowed in the shell, and in a forthcoming paper they are used to study
the stability of the membrane solution in the presence of bending thereby generalizing
the results presented in {7].

~
|
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Résumé—Une théorie approximative d’enveloppes est formulée dans le cadre de la théorie générale d*¢lasticité
finie pour une déformation sans restriction. Un champ de déformation est construit dans toute I’enveloppe basé
sur la solution du probléme de membrane correspondant. Une déformation supplémentaire est alors surimposée
a cet “état de membrane” et les équations de mouvement qui résultent pour ’état final linéarisées dans le déplace-
ment supplémentaire. Ces équations sont alors prises “‘en moyenne’” au moyen de I'épaisseur de 'enveloppe pour
donner une théorie d’enveloppes approximative. Les détails sont suivis pour le cas dans lequel la déformation
supplémentaire est elle-méme linéarisée dans la variable de I'épaisseur de sorte que les normales a la surface
moyenne restent droites et uniformément aliongées, mais pas nécessairement normales. La théorie résultante est
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Zusammenfassung—FEine annidhernde Schalenthoerie wird im Rahmen der aligemeinen Theorie der endlichen
Elastizitdt der unbegrinzten Deformierung formuliert. Ein Deformationsfeld wird iiber die Schale aufgebaut,
das auf der Losung des entsprechenden Membranenproblemes basiert. Eine weitere Deformierung wird dann
iiber diesen *“Membranenzustand gesetzt und die sich ergebenden Gleichungen des Endzustandes werden in der
weiteren Verschiebung linearisiert. Diese Gleichungen werden dann *auf den Durchschnitt gebracht’ durch die
Schalendicke und geben die entsprechende Schalenthorie. Einzelheiten werden fiir den Fall gegeben, wenn die
weitere Deformierung selbst linearisiert ist sodass die Dickenvariablen-Normale zur Mitteloberfliche gerade
und gleichmissig bleibt aber nicht notwendigerweise normal. Die Theorie wird dann angewandt zur Losung des
Problemes einer gleichmiissig verdrehten und vergdsserten Zylinderschale.

Abcrpaxr—TIIpusonutcs dopMynuposka npubmmxenuoi teopun obonouek, B upeaenax obuwe# Teopum
KoHeuno#f ynpyroctH Aas Becxoneunoit pepopmauuu. Tlone nedbopmaumu, OCHOBAHHOE HA DEWICHUH
cooTpeTCTBYIOWIEH 3ana4u MeMOpausbl, nocTpoeto 4epe3 oGosiouky. Hanee cynepnonupyercst 100aBoYHYO
nepopManmio K 3ToMy ‘‘MeMOPAHHOMY COCTOSHMIO ' M JIHHEAPHIYIOTCH MOCTPOEHHbIE YPABCHHS JABUKCHUSA
U1 OCTATOMHOTO COCTOSHMS B 100aBOYHOM mnepeMellieHHH. Torna 3Ty ypaBHends ‘‘ycpemssiorcs’’ Mo
TonwmHe 060MOUKH, YTOOBI nponssBecTu NpubavkeHHyio Teopwio obonouek. Pa3zpa®orannl neranud ans
Cllyyas, B KOTOPOM A06aBovHasn Jedopmauus spnsercs, cama no cede, iMHEapU30BAHHOHK 110 W3IMEHsIeMOH
TOJLMEE TAK, YTO HOPMAJIH K CPEAMHHON ITOBEPXHOCTH OCTAKTCH NPOCTHIMU M PABHOMEPHO PACTAHYTLIMH,
HO He BCETAa NepHEeHAMKYIAPHBIMU.

TTocTpoena TeOpHs IPUMEHEHA TOIAA X PEHICHHIO 3allavy LMAKHAPHYIECKOH, 060I04KY, nonsepraeMoi
PaBHOMEPHOMY KPYYEHHIO, DACTAXKEHHIO M HAMOJHCHHUIO,



